A computational study of diffusion in a glass-forming metallic liquid

نویسندگان

  • T. Wang
  • F. Zhang
  • L. Yang
  • X. W. Fang
  • S. H. Zhou
  • M. J. Kramer
  • C. Z. Wang
  • K. M. Ho
  • R. E. Napolitano
چکیده

Liquid phase diffusion plays a critical role in phase transformations (e.g. glass transformation and devitrification) observed in marginal glass forming systems such as Al-Sm. Controlling transformation pathways in such cases requires a comprehensive description of diffusivity, including the associated composition and temperature dependencies. In the computational study reported here, we examine atomic diffusion in Al-Sm liquids using ab initio molecular dynamics (AIMD) and determine the diffusivities of Al and Sm for selected alloy compositions. Non-Arrhenius diffusion behavior is observed in the undercooled liquids with an enhanced local structural ordering. Through assessment of our AIMD result, we construct a general formulation for Al-Sm liquid, involving a diffusion mobility database that includes composition and temperature dependence. A Volmer-Fulcher-Tammann (VFT) equation is adopted for describing the non-Arrhenius behavior observed in the undercooled liquid. The composition dependence of diffusivity is found quite strong, even for the Al-rich region contrary to the sole previous report on this binary system. The model is used in combination with the available thermodynamic database to predict specific diffusivities and compares well with reported experimental data for 0.6 at.% and 5.6 at.% Sm in Al-Sm alloys.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pronounced asymmetry in the crystallization behavior during constant heating and cooling of a bulk metallic glass-forming liquid

The crystallization behavior of the supercooled bulk metallic glass-forming Zr41Ti14Cu12Ni10Be23 liquid was studied with different heating and cooling rates. A rate of about 1 K/s is sufficient to suppress crystallization of the melt upon cooling from the equilibrium liquid. Upon heating, in contrast, a rate of about 200 K/s is necessary to avoid crystallization. The difference between the crit...

متن کامل

Small atom diffusion and breakdown of the Stokes–Einstein relation in the supercooled liquid state of the Zr46.7Ti8.3Cu7.5Ni10Be27.5 alloy

Be diffusivity data in the bulk metallic glass forming alloy Zr46.7Ti8.3Cu7.5Ni10Be27.5 are reported for temperatures between 530 and 710 K, extending 85 K into the supercooled liquid state of the alloy. At the glass transition temperature Tg, a change in temperature dependence of the data is observed, and above Tg the diffusivity increases more quickly with temperature than below. The data in ...

متن کامل

Similarities and Differences between the Glass Forming Mechanism in Polymers and Metallic Liquids

Survey of categorization of glass forming mechanisms in liquids based on the known principles reported in the literature is given. The metallic glass-forming liquids can be divided into two types – strong (with high glass forming ability) and fragile (with low glass forming ability). While the bulk amorphous alloys formed from strong liquids do not exhibit sensitivity to low temperature relaxat...

متن کامل

The viscosity of the Zr46.75Ti8.25Cu7.5Ni10Be27.5 bulk metallic glass forming alloy in the supercooled liquid

The viscosity of the Zr46.75Ti8.25Cu7.5Ni10Be27.5 bulk metallic glass forming alloy in the supercooled liquid was measured using parallel plate rheometry. The measurements were carried out with different heating rates between 0.0167 and 1.167 K/s as well as isothermally. Because of the high thermal stability above the glass transition of this bulk metallic glass former with respect to crystalli...

متن کامل

Atomic-scale structural evolution and stability of supercooled liquid of a Zr-based bulk metallic glass.

In this Letter, direct experimental evidence is provided for understanding the thermal stability with respect to crystallization in the Zr(41.2)Ti(13.8)Cu(12.5)Ni(10)Be(22.5) glass-forming liquid. Through high-resolution transmission electron microscopy, the atomic-structure evolution in the glass-forming liquid during the isothermal annealing process is clearly revealed. In contrast with the e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015